

Indonesia's Coal Fleet Retrofits for the 21st Century

Presentation By Keith Moore – CEO

"Strategies for Targeted Emission's from The Indonesian Coal-Fired Fleet"

Jakarta, Indonesia

July 11 & 12 2023

Indonesia's Electric Generating Capacity

- Estimated Total Capacity: 63 GW*
- 104 Coal-Fired Plants: 46 GW* (62% of total)
- > 50% require retrofits for Emissions Pollution Control

Indonesia's Electric Generating Capacity

COAL-FIRED ELECTRIC GENERATING PLANTS

• - 15 PLANTS W/ ESP + SO_2 WFGD:

• - 46 PLANTS W/ ESP:

>100 MW

~ 6.75 GW

~ 19.80 GW

Plants seeking pollutant emissions control and higher efficiency

- 21 Wall-Fired w/ ESP:

- 15 TANGENTIAL-FIRED W/ ESP:

- 8 CYCLONE-FIRED W/ ESP:

~ 11.00 GW

~ 5.10 GW

~ 850 MW

PLN Coal-Fleet System Performance*

• Electrical Production:	(GW HRS. / YR.)	114.7
--------------------------	-----------------	-------

• ANNUAL COAL CONSUMPTION: (106 Tons / yr.)	 Annual 	COAL	CONSUMPTION:	$(10^6 \text{ Tons } / \text{ yr.})$	129
---	----------------------------	------	--------------	--------------------------------------	-----

• THERMAL EFFICIENC	Y AVERAGE: (MW OUT / ENERGY IN)	24.54%
---------------------	---------------------------------	--------

 HEAT RATE AVERAGE: 	(3412 / % Efficiency)	13,900
--	-----------------------	--------

 CAPACITY FACTOR: 	(Delivered MW / Full Load MW)	50.9%
--------------------------------------	-------------------------------	-------

• LOAD FACTOR: (GENERATED MW / RATED MW) 84.1%

*Handbook of Energy & Economic Statistics of Indonesia - 2022

Indonesia's Coal-Fired Plants 'Today'

Indonesia "Suralaya" Coal Analysis

Removing water (coal drying) increases Fuel Energy Values

Indonesia Coal Analysis - Suralaya (Tekmira)				
Parameter	As Received Basis (%)			
Total Coal Moisture (water)	27.8			
Inherent Coal Moisture (water)	12.9 (- 46%)			
Ash Content	7.02			
Volatile Matter	39.46			
Fixed Carbon	40.55			
Total Sulfur	0.82			
Net Calorfic Value	4,367.75			
Calorfic Value (Air Dried)	5753.75 (+ 32%)			

Indonesia's Emission Standards for Coal-Fired Plants*

SO₂ - NO_x - Particulates & Mercury

Maximum pollutant concentrations from stack					
Existing Plants	mg/m	ppm	# / MMBtu		
Particulate Matter (PM)	100				
Sulfur Dioxide (SO ₂)	550	193	0.45		
Nitrogen Oxides (NO _x)	550	270	0.45		
Mercury (Hg)	0.03				

^{*} Ministry of Environment and Forestry Decree: P15/MENLHK/4/2019 (April 23, 2019)

LNS-CAP Emissions Meet Indonesia's Regulations

ESSO LNS-CAP Facility, Cold Lake, Alberta, Canada

Maximum pollutant concentrations from stack					
Existing Plants	mg/m	ppm	# / MMBtu		
Particulate Matter (PM)	100				
Sulfur Dioxide (SO ₂)	550	193	0.45		
Nitrogen Oxides (NO _x)	550	270	0.45		
Mercury (Hg)	0.03				

Subbituminous "Highvale" Coal $SO_2 - 0.2 \text{ lb./MMBtu} \frac{\text{(250 mg/m})}{\text{NO}_x} - 0.15 \text{ lb./MMBtu} \frac{\text{(184 mg/m})}{\text{80}} = 0.00 \text{ lb./mmbtu}$

Indonesia's Coal-Fired Plant 'Today'

Indonesia's Coal-Fired Plant – Typical Conversion

High \$\$\$ + ~2 % Parasitic Loads + Increased CO2 Emissions!

CastleLight Energy Corp. Clean Combustion System (CCS)

CCS Steam Generator Retrofit Program

- Review plant for modifications to improve Heat Rate efficiency.
- Develop detailed 3 view drawings of existing and CCS modified plant
- Add fast safe <u>coal beneficiation step</u> (remove water from coal).
- Remove coal burners and install <u>CCS Hybrid of Coal Gasification</u>.
- Rework plant's <u>rotating turbine and machinery for improved efficiency</u>.
- Update plant's existing ESP for particulate and mercury control.

CCS Features:

- Strong SO2 and NOx control with powdered limestone.
- High efficiency (slagging) combustion; carbon in fly ash (LOI < 1 %)
- Eliminates ash deposition on furnace walls.
- Plant operation, startup, and turn-down familiar to operators (same as before).

CCS Technology:

• Evolved from fundamental combustion research developed for the U.S Moon rocket program.

U.S. Utility / U.S. DOE peer reviewed:

• > \$60 million in R&D, Field Demonstrations & Commercial Programs.

Indonesia's Coal-Fired Plant – CCS Conversion

- 1. Pulverize coal with limestone Remove water from coal
- 2. Remove Coal Burners
- 3. Install new "Hybrid of Coal-Gasification" module to furnace
- 4. Mercury = Inject Activated Carbon

CCS Hybrid Coal Gasification Schematic

- Coal "Gasification" module added to furnace.
 - Replaces existing wind-box & coal burners.
 - Water cooled walls with high temp refractory
 - Liquid Slag / Bottom Ash drains to water quench tank for disposal
 - 3. Existing Furnace with New Over Fire Air (OFA) Ports

Retrofit Estimates for Coal-Fired Plant

FGD+SCR+Baghouse VS. CCS + Baghouse

Power Plant Emissions Control Cost - PRB Coal (80% CF)							
Control Technology Equipment CAPx (\$/kW) Fuel (\$/MW-h) O&M X (\$/MW-h) OpX (\$/MW-hr)							
FGD + SCR + Baghouse	1327	17.4	4.6	22.0			
CCS + Baghouse	425	13.2	2.0	15.2			
Delta Savings	68%	24%	58%	31%			

Levelized Cost of Electricity for Existing Generation*	\$/MW-h	LCOE
Retrofit 400 MW Coal Plant w / CCS	\$ 27.7	-
Nuclear	\$ 29.1	5%
Natural Gas Turbine Combined Cycle	\$ 34.4	24%
Hydroelectric	\$ 35.4	28%
Conventional Supercritical Coal	\$ 39.9	44%
Retrofit 400 MW Coal Plant w/ FGD+SCR+Baghouse	\$ 40.5	46%
Natural Gas Fired Combustion Turbine	\$ 88.2	218%
Intermittent Wind w/ Cost Imposed on CC Gas	\$ 107.4	287%
Intermittent PV Solar w/ Cost imposed on CC Gas	\$ 140.3	406%

^{*} THE LEVELIZED COST OF ELECTRICITY FROM EXISTING GENERATION RESOURCES June 2019

CCS Coal Drying

(Estimate) - PLTU Suralaya Plant #1 to #7

RAW SURALAYA* COAL:

• Coal HHV (J/G) (@ ~28% moisture): 24,091

• Electricity Production (MW Hrs. / yr.): 19.55×10^6

• Specific Wet Coal Consumption (Tons / MW hr.): 0.525

• Coal Consumption (Tons / Yr.): 10.14×10^6

• ESTIMATED CO2 EMISSIONS (TONS / YR.): 188,540

CCS Dried Suralaya* Coal:

• Coal HHV (J/G) (@ ~9% moisture): 30,448 (+ 24.9%)

• Specific "Dry" Coal Consumption : (Tons / MW hr.): 0.451 (- 7.4 %)

• ESTIMATED "DRY" COAL CONSUMPTION (TONS / YR.): 9.63 x 10⁶

• ESTIMATED CO₂ EMISSIONS (TONS / YR.): 175,640

• Net CO_2 Reduction = 6.8 % - 12,900 T/Yr.

Coal Consumption Reduced
 437,000 T / yr.

• ESTIMATED FUEL COST SAVINGS (@ \$20 / TON) \$87.4 x 106

CCS Studies / Projects / Programs

Wall-Fired / Tangential / Cyclone boilers (> 2100 MW)

Client / EPC	Plant Size	Boiler Type	Coal	Summary
ESSO - Shell / Monenco	50 MMBtu - 3 T/hr.	Industrial Steamer	Western Subbituminous	\$8 M Low NOx / SOx Pilot Demonstration - 1 yr. operation
Southern Illinois Power Coop. / Bechtel	33 MW	Cyclone - B&W	Illinois HS Bituminous	\$150 K Proposal - DOE Clean Coal Technology II (CCT II)
Southern Illinois Power Coop. / Bechtel & Riley Stoker	33 MW	Cyclone - B&W	Illinois HS Bituminous	\$15 M AWARD - DOE Clean Coal Technology II (CCT II) (Project to 70% & Delayed - Not completed)
Union Electric / Bechtel	500 MW	Cyclone - B&W	Illinois HS Bituminous	\$250 K Engineering Design & Cost Est.
Indianapolis Power & Light	108 MW	CE - Tangential	Illinois HS Bituminous	\$25 M Proposal - DOE Clean Coal Power Initiative (CCPI)
Central Illinois - AES	125 MW	Wall-Fired - Riley Reheat	Illinois HS Bituminous	\$100 K CCS Application Study
Progress Energy	90 MW	Wall-Fired - B&W	W VA Bituminous	\$100 K CCS Application Study
Central Illinois - AES	260 MW	Wall-Fired - Riley Reheat	Illinois HS Bituminous	\$150 K CCS Application & CFD Study
Houston Light & Power	130 MW	CE - Wall Fired (Gas to Coal)	Western Subbituminous	\$ 100 K CCS Conversion to coal confirmed
Niagara Mohawk P&L	800 MW	Wall-Fired Foster Wheeler (Oil to Coal)	Bituminous	\$ 100 K CCS Conversion to coal confirmed by FW
Wisconsin P&L	90 MW	Wall-Fired - B&W	Bituminous	\$100 K CCS Application Study
Industrial Grain Processor / McBurney (CCS Installation by Client)	30 MW _T (5 T/hr.)	Industrial Stoker	Illinois HS Bituminous	\$3.5 M CONTRACT - CCS Design & Build Retrofit w/ Warrantee (MCR Full Load Operation)

Rockwell International R&D Test Facility

25 x 10₆ Btu/hr (1 ton/hr) (1990)

Utility Consortium

Provided Technical Guidance and Funded Retrofit Studies for their

- **Coal-Fired Plants**
- Southern California Edison
- Houston Power & Light
- Wisconsin Public Service
- Niagara Mohawk Power
- TransAlta Utilities Canada

>>"Burns Coal as Clean as Natural Gas" <<

Low NO_x SO_x Coal Application Pilot (LNS-CAP)

- ESSO Oil Recovery Site,
- Cold Lake, Alberta Canada
- 50 MMBtu/hr.
- 3T / hr. PRB Coal
- One Year Operation

LNS-CAP
CCS Gasification Chamber Inspection

LNS-CAP Demonstrated Emissions

ESSO LNS-CAP Facility, Cold Lake, Alberta, Canada – Subbituminous "Highvale" Coal SO₂ - 0.2 lb./MMBtu (250 mg/m) NO_x - 0.15 lb./MMBtu (184 mg/m)

Coal-Fired Stoker Boiler

CCS Retrofit Modifications

Remove:

- Stoker Feeder System
- Coal & Ash Hopper,
- Brick over stoker grate
- Control Panel

Engineer, Design, & Supply all Hardware:

- CCS Burner,
- · Gasification Chamber,
- Combustion Air Heat Exchanger
- All Boiler Instrumentation,
- Coal Mill, Coal-Air Separator, FD fan, Boiler & Combustion Management Sys, HMI & PLC New New Control Panel & MCC

Operators (two / shift):

Was all manual; Now with HMI - from cold start to automatic full load operation in 5 hrs.

CCS-Stoker® Boiler Retrofit

- 30 MW (Thermal)
- 125 MMBtu/hr.
- 5 T/hr. Coal
- Detailed 3D Model of Plant

CCS Gasification Chamber Installation

CCS Gasification Chamber Installation

- Shop fabricated assembly
- Membrane water wall, studded and refractory lined.
- Connected to the boiler drums for natural circulation water cooling.
- The CCS Burner assembly is the blue box inside building

CCS-Stoker® Equipment & Operation

- CCS "Indirect Firing" Scheme
- Refurbished 453 CE/ Raymond mill
- Uses hot combustion flue gas (< 10% O₂)
- Fixed sweep gas flow, variable coal flow
- Exit gas temperature: 150 F
- Dry powdered coal directed to pulse-jet bag house

Pulverizer

CCS Coal-Air Separator

- Pulse-jet baghouse separates pulverized coal from mills wet sweep gas.
- Pulse-jet uses plants inert flue gas for safety.
- Hopper maintains ~30 min. coal supply w/ level switches to manage coal feed to mill.
- PC then metered to CCS burners by rotary feeders.

CCS-Stoker® Operation Observations

- No Ash Deposits on Furnace Walls @ 6 months
 - No Plugging or Fouling of Back Pass Section

Furnace Walls

Furnace Ceiling & OFA Ports

EST. 2006

CCS-Stoker® Retrofit Performance

Full Load Operation (2.5 % Sulfur Illinois Bituminous Coal)

Stoker Boiler Performance	Stoker Base Line Test	CCS Full Load	Change from Base Line %
SO ₂ Stack Emissions lb./MMBtu / (mg/m³) / <u>ppm</u>	1.8 / (2250) / <u>790</u>	0.72* / (900) / <u>315</u>	- 67 %
NOx Stack Emissions lb./MMBtu / (mg/m³) / ppm	0.5 / (630) / <u>680</u>	0.14 / (180) / <u>88</u>	- 72 %
Boiler Efficiency	77 %	87 %	+ 12.8 %
CO ₂ Emissions - Ton/yr.	94,019	73,720	- 20,300 T/y
CO ₂ Emissions Reduction			(- 21.6 %)

CCS-Cyclone Boiler Retrofit

Typical 400 MW PC Fired Boiler

Opposed Wall Fired

- 6 Mills
- 24 Coal Burners

CCS Wall-Fired Retrofit Boiler

- Remove: Coal Burners
- Brick over burner ports

Add New:

- 24 CCS Burners
- 6 Gasification Chamber's
- 6 Coal / Sweep Gas Seperators

CCS-Tangential™ Boiler Retrofit

Indianapolis Power & Light
Unit 6

108 MW TANGENTIAL BOILER WITH CCS RETROFIT

CCS Retrofit Efficiency / Heat Rate

- Remove water from coal ; from 30% to $^{\sim}$ 8% (Increases fuel BTU values & reduce in furnace "Latent heat of water loss")
- High temperature combustion: = higher steam temperatures: (each + 50 F = + 1% efficiency)
- High carbon conversion with low excess air:
 Very low (~ 1%) LOI (Low NO_x burners = ~ 7% LOI)
- No SO³ in flue gas (reduce furnace exhaust gas temperatures)
- Very clean furnace walls (minimum / no soot blowing required)
- Eliminate FGD and SCR emission control systems (~ 2% parasitic loss)
- Rework plant's rotating turbine and machinery for improved efficiency.

CCS Retrofit Summary

Update coal-fired power plants for 21st Century

- From Fundamental Combustion Theory to Commercial Operation.
- Improve plant Heat Rate to near HLEC performance.
- Meets stringent environmental SO₂ & NO_x pollution regulations.
- Affordable retrofit cost for competitive capacity factor & dispatch
- All equipment fits within plant site & boiler footprint.
- Ash products have value (sell bottom ash & fly ash)
- No Hazardous or Toxic Chemicals Required

CCS is ADVANCED COAL GASIFICATION TECHNOLOGY!

Keith A. Moore CEO - CastleLight Energy

Business Development & Technology Management

Mr. Moore focuses on strategies to mitigate / control pollution emissions from coal-fired electric generating plants to meet U.S. EPA's stringent air quality regulations.

Mr. Moore has 30 years of technical, business development and management of advanced environmental control technologies;

Dry Flue Gas Desulfurization Systems

(Dry FGD scrubber), including development and commercialization

The Clean Combustion System (CCS)

a field-demonstrated hybrid of coal-gasification and combustion for control of SO_2 and NO_x emissions with improved efficiency,

Coal Beneficiation Processes

Remove water, ash and recover oil values from coal, He holds patents for Sulfur Capture and Coal Beneficiation

B.S., Electrical Engineering, Virginia Polytechnic Institute General Contractor - "B" License, State of California Pilot – Commercial / Instrument, IGI; SEL, Glider

Keith A. Moore CastleLight Energy Corp.

277 Sunset Dr. Oxnard, CA 93035

E-Mail: keith@castle-light.com

Phone: 805-551-0983

Visit: www.Castle-Light.com